### Notes 5.1 Solving Systems of Linear Equations by graphing



#### Solving a System of Linear Equations by Graphing

Step 1: Graph each equation in the same coordinate plane.

**Step 2:** Estimate the point of intersection.

**Step 3:** Check the point from Step 2 by substituting for x and y in

each equation of the original system.

## Solve the system of linear equations by graphing.

1. 
$$y = x - 1$$
  
 $y = -x + 3$ 



$$y = x - 1$$
 $1 = 2 - 1$ 
 $1 = 1$ 
 $y = -x + 3$ 
 $1 = -2 + 3$ 



Solve the system of linear equations by graphing.

**2.** 
$$y = -5x + 14$$
  $y = x - 10$ 

$$y = -5x + 14$$
  
 $-6 = -5(4) + 14$   
 $-6 = -20 + 14$   
 $-6 = -6$ 



Solve the system of linear equations by graphing.

3. 
$$y = x$$

$$y = 2x + 1$$

$$y=x$$
  
 $-1=-1$   
 $y=2x+1$   
 $-1=2(-1)+1$   
 $-1=-1$ 



Solve the system of linear equations by graphing.

**4.** 
$$y = -4x - 7$$

$$x + y = 2$$

$$-x - x$$





Solve the system of linear equations by graphing.

**5.** 
$$x - y = 5$$

$$-3x + y = -1$$

$$\frac{x-y-5}{-x}$$
  $\frac{-3x+y-1}{+3x}$   $\frac{-3x+y-1}{-3x}$ 





Solve the system of linear equations by graphing.



A kicker on a football team scores 1 point for making an extra point band 3 points for making a field goal. The kicker makes a total of 7 extra points and field goals in a game and scores 17 points. Write and solve a system of linear equations to find the number x of extra points and the number y of field goals.



#### Notes 5.2 Solving Systems of Linear Equations by Substitution



#### Solving a System of Linear Equations by Substitution

- Step 1: Solve one of the equations for one of the variables.
- **Step 2:** Substitute the expression from Step 1 into the other equation and solve for the other variable.
- **Step 3:** Substitute the value from Step 2 into one of the original equations and solve.

# Solve the system of linear equations by substitution. Check your solution.

Solve the system of linear equations by substitution. Check your solution.

2. 
$$4x + 2y = 0$$
  $(2, -4)$   
 $y = \frac{1}{2}x - 5$   
 $4x + 2(\frac{1}{2}x - 5) = 0$   
 $4x + x - 10 = 0$   
 $5x - 10 = 0$   
 $+ 10 = 0$   
 $+ 10 = 0$   
 $+ 10 = 0$   
 $+ 10 = 0$ 

$$4x+2y=0$$

$$4(2)+2(4)=0$$

$$8-8=0$$

$$0=0$$

$$y=\frac{1}{2}(2)-5$$

$$y=\frac{1}{2}(2)-5$$

$$y=1-5$$

$$-4=\frac{1}{5}$$

$$-4=-4$$

Solve the system of linear equations by substitution. Check your solution.

3. 
$$x = 5y + 3$$

$$2x + 4y = -1$$

$$x = -\frac{5}{2} + \frac{3}{1}$$

$$2(5y + 3) + 4y = -1$$

$$x = -\frac{5}{2} + \frac{1}{2}$$

$$x = -\frac{1}{2}$$

$$x = -\frac{1}{2$$

4. You sell lemonade for \$2 per cup and orange juice for \$3 per cup. You sell a total of 100 cups for \$240. Write and solve a system of linear equations to find the number of cups of lemonade and the number of cups of orange juice you sold.

4=40

40 cups of range juice

$$\begin{cases} 2x + 3y = 240 \\ x + y = 100 \end{cases}$$

$$2x + 3y = 240$$

$$2(60) + 3(40) = 240$$

$$240 = 240$$

$$240 = 240$$

$$x + y = 100$$

$$y + 200 + 3y = 240$$

$$y + 200 = 240$$

$$y + 200 = 240$$

$$y + 200 = 240$$

## Notes 5.3 Solving Systems of Linear Equations by Elimination



#### Solving a System of Linear Equations by Elimination

- **5tep 1:** Multiply, if necessary, one or both equations by a constant so at least 1 pair of like terms has the same or opposite coefficients.
- Step 2: Add or subtract the equations to eliminate one of the variables.
- **Step 3**: Solve the resulting equation for the remaining variable.
- **Step 4:** Substitute the value from Step 3 into one of the original equations and solve.

Solve the system of linear equations by elimination. Check your solution.

1. 
$$2x - y = 9$$

$$4x + y = 21$$

$$2x-y=9$$
 $2(5)-1=9$ 
 $10-1=9$ 
 $9=9$ 

$$4x+y=21$$
 $4(5)+1=21$ 
 $20+1=21$ 
 $21=21$ 

Solve the system of linear equations by elimination. Check your solution.

2. 
$$-5x + 2y = 13$$
  
 $-5x + y = -1$ 

$$5x + 4 = -1$$
 $-4 - 4$ 
 $5x = -5$ 
 $5$ 
 $x = -1$ 

Solve the system of linear equations by elimination. Check your solution.

3. 
$$3x + 4y = -6$$
 = multiply by -1 so you can eliminate by Adding.  
 $7x + 4y = -14$ 

$$(+)$$
  $-3x - 4y = 6$   
 $4x = -8$ 

$$\frac{4x = -8}{4}$$

$$(-2,0)$$

$$3x+4y=-6$$

$$3(-2)+4(0)=-6$$

$$-6=-6$$

$$7x + 4y = -14$$
  
 $7(-2) + 4(0) = -14$   
 $-14 = -14$ 

## Notes 5.3 Solving Systems of Linear Equations by Elimination



Solving a System of Linear Equations by Elimination

Step 1: Multiply, if necessary, one or both equations by a constant so at least 1 pair of like terms has the same or opposite coefficients.

Step 2: Add or subtract the equations to eliminate one of the variables.

Step 3: Solve the resulting equation for the remaining variable.

Step 4: Substitute the value from Step 3 into one of the original equations and solve.

Solve the system of linear equations by elimination. Check your solution.

4. 3x + y = 11 ← multiply by -2 so you can diminde by addition 6x + 3y = 24

3x+y=11 3(3)+2=11 9+2=11 11=11/

X=3

6(3)+3(2)=24

24=24/

Solve the system of linear equations by elimination. Check your solution.

5. 
$$4x - 5y = -19$$

$$(+) \frac{4x-5y--19}{-13y-13}$$

$$-\frac{13y-13}{-13}$$

$$-\frac{13y-13}{-13}$$

x=-10

$$\begin{array}{c}
4x + 5y = -19 \\
+(6) - 5(-1) = -19 \\
-24 + 5 = -19 \\
-19 = -19
\end{array}$$

$$-x - 2y = 8 \\
-(-6) - 2(-1) = 8 \\
6 + 2 = 8 \\
8 = 8
\end{array}$$

Solve the system of linear equations by elimination. Check your solution.

6. 
$$5y = 15 - 5x$$

$$5y = 15 - 5x$$
  
 $y = -2x + 3$  - multiply by -5  
 $5y = 15 - 5x$ 

$$y = -2(0) + 3$$
 $y = 3$ 

7. A landscaper buys 4 peonies and 9 geraniums for \$190. Another landscaper buys 5 peonies and 6 geraniums for \$185. Write and solve a system of linear equations to find the cost of each peony.

$$\begin{cases} 4p + 9q = 190 \\ 5p + 6q = 185 \end{cases}$$

$$5(4p+9g=190) \rightarrow 20p+45g=950$$

$$-4(5p+6g=185) \rightarrow -20p-24g=-740$$

$$\frac{21g}{21}=\frac{210}{21}$$

$$g=10$$

$$4p + 9(10) = 190$$
 $4p + 90 = 190$ 
 $-90 - 90$ 
 $4f = 100$ 
 $4$ 

The peoply cost \$25

P=25



#### Methods for Solving Systems of Linear Equations

| Method                                    | When to Use                                                                           |
|-------------------------------------------|---------------------------------------------------------------------------------------|
| Graphing (Lesson 5.1)                     | To estimate solutions                                                                 |
| Substitution (Lesson 5.2)                 | When one of the variables in one of the equations has a coefficient of 1 or $-1$      |
| Elimination (Lesson 5.3)                  | When at least 1 pair of like terms has the same or opposite coefficients              |
| Elimination (Multiply First) (Lesson 5.3) | When one of the variables cannot be eliminated by adding or subtracting the equations |



#### Solutions of Systems of Linear Equations

A system of linear equations can have *one solution*, *no solution*, or *infinitely many solutions*.



One solution

The lines intersect.



No solution

The lines are parallel.



Infinitely many solutions

The lines are the same.

Solve the system of linear equations. Check your solution.

1. 
$$y = -x + 3$$

$$y = -x + 5$$

-X+5=-X+3 +X +X

Solve the system of linear equations. Check your solution.

2. 
$$y = -5x - 2$$

$$5x + y = 0$$

Solve the system of linear equations. Check your solution.

$$3. x = 2y + 10$$

$$2x + 3y = -1$$

Solve the system of linear equations. Check your solution.

$$4. x + y = 3$$

$$x - y = -3$$

Solve the system of linear equations. Check your solution.

$$5(2x + y = 5) - 2$$
$$4x + 2y = 0$$

Solve the system of linear equations. Check your solution.

$$6(2x - 4y = 10)$$
 $-12x + 24y = -60$ 

$$\frac{12x - 24y = 60}{-12x + 24y = -100}$$

infinitely many soldrons

The perimeter of Rectangle A is 54 units. The perimeter of Rectangle B is 108 units. Write and solve a system of linear equations to find the values of x and y.





